This study applied the Adaptive Neuro-Fuzzy Inference System (ANFIS) to design a recognition model of personalized rehabilitation. In the model, the user may take a wearable sensor and follow the assigned joint-relax exercise to measure the motions of the upper limbs. The sensor that is embedded with the chips of accelerometer, gyroscope, and inclinometer produced the sample datasets due to the exercise schedule of physiotherapy assignment. All motion samples were labeled by arbitrary numbers, which can be identified to the specific motion, for the data training process. A Fuzzy Inference System (FIS) was initially designed by the steps of data pre-processing, featuring, fuzzifying, and ruling Fuzzy logics according to the sample datasets. The FIS was then trained by the ANFIS for optimization by tuning parameters of the features. In testing, the accomplished FIS could recognize the motion features by the defuzzifier that infers the label corresponding to the motion. As a result, the average recognition rate was higher than 90% when the testing motions followed the sampling schedule of the physiotherapy assignment. The model can be applied in the ubiquitous healthcare measurement for health services. The professionals can assess whether the subject obeyed the assigned program or not based on detail motions of the exercise. This approach can be enabled on the trackable interface for the physiatrists to screen the motions of routine rehabilitation.


    Access

    Download


    Export, share and cite



    Title :

    Personalized Rehabilitation Recognition Model upon ANFIS


    Contributors:

    Publication date :

    2020-01-01


    Remarks:

    doi:10.46604/peti.2020.3912
    Proceedings of Engineering and Technology Innovation; Vol 14 (2020); 22-28 ; 2518-833X ; 2413-7146



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629




    Driver's Speed Decision-Making Model Based on ANFIS

    Li, Lian ;Yang, Song ;Cao, Wen Jing | Trans Tech Publications | 2014


    Driver's Speed Decision-Making Model Based on ANFIS

    Li, Lian / Yang, Song / Cao, Wen-Jing | Tema Archive | 2014


    A personalized rehabilitation system based on wireless motion capture sensors

    Macedo, Pedro / Afonso, José A. / Simões, Ricardo | BASE | 2015

    Free access

    Comparison of modified Karnik-Mendel algorithm-based interval type-2 ANFIS and type-1 ANFIS

    Öztürk, Muhammet / Özkol, İbrahim | Emerald Group Publishing | 2021


    Hybrid ANFIS Controller for 6-DOF Manipulator with 3D Model

    Mashhadany, Yousif Al | BASE | 2005

    Free access