Hand gesture recognition based on myoelectric (EMG) signals is an innovative approach for the development of intuitive interaction devices, ranging from poliarticulated prosthetic hands to intuitive robot and mobile interfaces. Their study and development in controlled environments provides promising results, but effective real-world adoption is still limited due to reliability problems, such as motion artifacts and arm posture, temporal variability and issues caused by the re-positioning of sensors at each use. In this work, we present an EMG dataset collected with the aim to explore postural and temporal variability in the recognition of arm gestures. Its collection of gestures executed in 4 arm postures over 8 days allows to evaluate the impact of such variability on classification performance. We implemented and tested State-of-the-Art (SoA) recognition approaches analyzing the impact of different training strategies. Moreover, we compared the computational and memory requirements of the considered algorithms, providing an additional evaluation criteria useful for real-time implementation. Results show a decrease in the recognition of inter-posture and inter-day gestures up to 20%. The provided dataset will allow further exploration of such effects and the development of effective training and recognition strategies.


    Access

    Download


    Export, share and cite



    Title :

    Exploring Arm Posture and Temporal Variability in Myoelectric Hand Gesture Recognition



    Publication date :

    2018-01-01



    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    DDC:    629



    Exploring Arm Posture and Temporal Variability in Myoelectric Hand Gesture Recognition

    Milosevic, Bojan / Farella, Elisabetta / Benatti, Simone | BASE | 2018

    Free access


    Gesture, Posture, Facial Interfaces

    Lee, Dongheui | German Aerospace Center (DLR) | 2020

    Free access

    Myoelectric Hand Prosthesis with Haptic System

    Bautista-Rodriguez, Alexis E. / Guillen-Juarez, Kevin A. / de la Tejera, Javier A. et al. | IEEE | 2021


    Real-Time Hand Gesture Recognition for Robot Hand Interface

    Lv, X. / Xu, Y. / Wang, M. | British Library Conference Proceedings | 2014