This paper presents the dynamic modeling of a four-mecanum-wheeled mobile robot (4MWMR) to be assessed for frequent turning motion. Overdriven factor in this kind of vehicle motion is one of the issues that need to be tackled for safety and energy efficiencies reasons especially in its turning region. Therefore, this study has taken initiative to analyzing 4MWMR through a structure of mathematical model starting from the inverse kinematics calculation. Moreover, the dynamic model of 4MWMR was calculated using Euler Lagrange approach as a part of the model for torque and force assessment. The analyses are done by using the data history of the experiment of an actual 4MWMR platform as trajectory input to kinematics and dynamics model that connected with 4MWMR transfer function plant. Finally, the performance of 4MWMR parameters; wheel velocity, torque and vehicle axial forces; are demonstrated. From the sample of turning point input, the results show that 4MWMR performing different speed of wheels at different poles during turning session as well as torques. Vehicle longitude force shows the highest since the vehicle is a holonomic system used more force on longitude and latitude axes instead of rotational force on the body.


    Access

    Download


    Export, share and cite



    Title :

    Dynamic Modeling and Analysis of Omnidirectional Wheeled Robot: Turning Motion Analysis



    Publication date :

    2018-01-22


    Remarks:

    Journal of Telecommunication, Electronic and Computer Engineering (JTEC); Vol 10, No 1-3: Moving Towards Industry 4.0 II; 103-108 ; 2289-8131 ; 2180-1843


    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Movement Performance Analysis of Mecanum Wheeled Omnidirectional Mobile Robot

    Ye, Changlong / Zhang, Jianhui / Yu, Suyang et al. | British Library Conference Proceedings | 2019


    Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method

    Weihao Li / Chenguang Yang / Yiming Jiang et al. | DOAJ | 2017

    Free access


    Hybrid Omnidirectional Wheeled Climbing Robot with an Electromagnet for Inspection

    Tarapongnivat, Kanut / Janna, Run / Nantareekurn, Worameth et al. | Springer Verlag | 2024


    LQR Trajectory Tracking Control of an Omnidirectional Wheeled Mobile Robot

    Morales, Sergio / Magallanes, Jose / Delgado, Cesar et al. | IEEE | 2018