Autonomous vehicles have become the forefront of the automotive industry nowadays, looking to have safer and more efficient transportation systems. One of the main issues for every autonomous vehicle consists in being aware of its position and the presence of obstacles along its path. The current project addresses the pose and terrain mapping problem integrating a visual odometry method and a mapping technique. An RGB-D camera, the Kinect v2 from Microsoft, was chosen as sensor for capturing information from the environment. It was connected to an Intel mini-PC for real-time processing. Both pieces of hardware were mounted on-board of a four-wheeled research concept vehicle (RCV) to test the feasibility of the current solution at outdoor locations. The Robot Operating System (ROS) was used as development environment with C++ as programming language. The visual odometry strategy consisted in a frame registration algorithm called Adaptive Iterative Closest Keypoint (AICK) based on Iterative Closest Point (ICP) using Oriented FAST and Rotated BRIEF (ORB) as image keypoint extractor. A grid-based local costmap rolling window type was implemented to have a two-dimensional representation of the obstacles close to the vehicle within a predefined area, in order to allow further path planning applications. Experiments were performed both offline and in real-time to test the system at indoors and outdoors scenarios. The results confirmed the viability of using the designed framework to keep tracking the pose of the camera and detect objects in indoor environments. However, outdoor environments evidenced the limitations of the features of the RGB-D sensor, making the current system configuration unfeasible for outdoor purposes. ; Autonoma fordon har blivit spetsen för bilindustrin i dag i sökandet efter säkrare och effektivare transportsystem. En av de viktigaste sakerna för varje autonomt fordon består i att vara medveten om sin position och närvaron av hinder längs vägen. Det aktuella projektet behandlar position och ...


    Access

    Download


    Export, share and cite



    Title :

    Terrain Mapping for Autonomous Vehicles ; Terrängkartläggning för autonoma fordon


    Contributors:

    Publication date :

    2015-01-01


    Type of media :

    Theses


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629