The main goal of this work is to present planar biomechanical multibody models, suitable to be used in inverse dynamic analyses. The proposed approach is straightforward and computationally efficient for the study of different human gait scenarios for normal and pathological. For this, a biomechanical model of the lower limb of the human body was developed. The biomechanical model consists of three bodies (thigh, calf and foot), corresponding to relevant anatomical segments of lower limb. These three rigid bodies are connected by revolute joints and described by eight natural coordinates, which are the Cartesian coordinates of the basic points located at the joints (hip, knee, ankle, metatarsal- phalangeal). The anthropometric dimensions of the model correspond to those of a normal male of 1.77 m and 80.0 kg. The total biomechanical system encompasses 5 degrees of freedom: 2 degrees if freedom for hip trajectory, 1 degree of freedom for hip flexion-extension motion, 1 degree of freedom for knee flexion-extension and 1 degree of freedom for ankle plantarflexion- dorsiflexion. The developed model was applied to solve an inverse dynamics problem of human motion. Therefore, the main objective of this simulation is to determine the joint moments-of- force and the joint reaction forces during an entire gait cycle, in order to compare with literature data. ; Fundação para a Ciência e a Tecnologia (FCT)


    Access

    Download


    Export, share and cite



    Title :

    Biomechanical models for human gait analyses using inverse dynamics formulation


    Contributors:

    Publication date :

    2013-01-01


    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Validation of the inverse dynamic analysis of human gait using a forward dynamics approach

    Pàmies Vilà, Rosa / Font Llagunes, Josep Maria | BASE | 2013

    Free access

    BIOMECHANICAL MODELS AND MEASURING TECHNIQUES FOR ULTRASOUND-BASED MEASURING SYSTEM DURING GAIT

    Kocsis, László / M. Kiss, Rita / Kocsis, Lászlóné et al. | BASE | 2004

    Free access

    Human Factors Simulation Using Demographically Tuned Biomechanical Models

    De Sapio, Vincent / Earl, Darren / Green, Rush et al. | Tema Archive | 2014


    Mobile robot-based gait training after total hip arthroplasty (THA) improves walking in biomechanical gait analysis

    Röhner, Eric / Mayfarth, Anke / Sternitzke, Christian et al. | BASE | 2021

    Free access