Steerable instruments allow for precise access to deeply-seated targets while sparing sensitive tissues and avoiding anatomical structures. In this study we present a novel omnidirectional steerable instrument for prostate high-dose-rate (HDR) brachytherapy (BT). The instrument utilizes a needle with internal compliant mechanism, which enables distal tip steering through proximal instrument bending while retaining high axial and flexural rigidity. Finite element analysis evaluated the design and the prototype was validated in experiments involving tissue simulants and ex-vivo bovine tissue. Ultrasound (US) images were used to provide visualization and shape-reconstruction of the instrument during the insertions. In the experiments lateral tip steering up to 20 mm was found. Manually controlled active needle tip steering in inhomogeneous tissue simulants and ex-vivo tissue resulted in mean targeting errors of 1.4 mm and 2 mm in 3D position, respectively. The experiments show that steering response of the instrument is history-independent. The results indicate that the endpoint accuracy of the steerable instrument is similar to that of the conventional rigid HDR BT needle while adding the ability to steer along curved paths. Due to the design of the steerable needle sufficient axial and flexural rigidity is preserved to enable puncturing and path control within various heterogeneous tissues. The developed instrument has the potential to overcome problems currently unavoidable with conventional instruments, such as pubic arch interference in HDR BT, without major changes to the clinical workflow.


    Access

    Download


    Export, share and cite



    Title :

    Axially rigid steerable needle with compliant active tip control


    Contributors:

    Publication date :

    2021-12-01


    Remarks:

    de Vries , M , Sikorski , J , Misra , S & van den Dobbelsteen , J J 2021 , ' Axially rigid steerable needle with compliant active tip control ' , PLoS ONE , vol. 16 , no. 12 , e0261089 . https://doi.org/10.1371/journal.pone.0261089



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    DDC:    629



    Rigid/Compliant Helicopter Rotor

    Jeffery, P. | NTRS | 1986


    Ovipositor-inspired steerable needle: Design and preliminary experimental evaluation

    Scali, Marta / Pusch, Tim Philipp / Breedveld, Peter et al. | BASE | 2018

    Free access

    Inductive and Deductive Reasoning for Robotic Steerable Needle in Neurosurgery

    Alice Segato / Valentina Corbetta / Francesco Calimeri et al. | BASE | 2020

    Free access

    STEERABLE MOVING CONTROL DEVICE

    JIN CHANG YONG | European Patent Office | 2023

    Free access

    Design of Axially Crushing Thin-Walled Square Tubes Using Compliant Mechanism Approach

    Bandi, Punit / Mozumder, Chandan / Tovar, Andres et al. | AIAA | 2010