The daily usage of a prosthesis for people with an amputation consists of phases of intermittent and continuous walking patterns. Based on this observation, this paper introduces a novel hybrid architecture to control a transfemoral prosthesis, where separate algorithms are used depending on these two different types of movement. For intermittent walking, an interpolation-based algorithm generates control signals for the ankle and knee joints, whereas, for continuous walking, the control signals are generated utilizing an adaptive frequency oscillator. A switching strategy that allows for smooth transitioning from one controller to another is also presented in the design of the architecture. The individual algorithms for the generation of the joints angles’ references, along with the switching strategy were experimentally validated on a pilot test with a healthy subject wearing an able-bodied adapter and a designed transfemoral prosthesis. The results demonstrate the capability of the individual algorithms to generate the required control signals while undergoing smooth transitions when required. Through the use of a combination of interpolation and adaptive frequency oscillator-based methods, the controller also demonstrates its response adaptation capability to various walking speeds.


    Access

    Download


    Export, share and cite



    Title :

    An adaptive hybrid control architecture for an active transfemoral prosthesis


    Contributors:

    Publication date :

    2022-05-19


    Remarks:

    Mazumder , A , Hekman , E E G & Carloni , R 2022 , ' An adaptive hybrid control architecture for an active transfemoral prosthesis ' , IEEE Access , vol. 10 , pp. 52008-52019 . https://doi.org/10.1109/ACCESS.2022.3173348



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    DDC:    629



    Torque control of an active elastic transfemoral prosthesis via quasi-static modelling

    Heins, Sophie / Flynn, Louis / Geeroms, Joost et al. | BASE | 2018

    Free access

    Recurrent Neural Network Control of a Hybrid Dynamical Transfemoral Prosthesis with EdgeDRNN Accelerator

    Gao, Chang / Gehlhar, Rachel / Ames, Aaron D et al. | BASE | 2020

    Free access



    Compliant Control of a Transfemoral Prosthesis by combining Feed-Forward and Feedback

    Heins, Sophie / Flynn, Louis / Laloyaux, Henri et al. | BASE | 2020

    Free access