Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018. ; This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. ; Cataloged from student-submitted PDF version of thesis. ; Includes bibliographical references (pages 133-140). ; In this thesis, we develop a real-time state estimation system to recover the pose and contact state of an object relative to its environment. The capability to make such estimations is important for a controller to adequately react to uncertainties in a manipulation task. We propose a framework that combines tactile and visual sensing to improve the accuracy and robustness. Visual sensing is versatile and non-intrusive but suffers from occlusions and limited accuracy, especially with regard to tasks involving contact. Tactile sensing (including contact and force) is local but provides accuracy and robustness to occlusions. The framework uses online estimation techniques to fuse kinematic measurements made by a robot, contact geometry of the object and the environment, and visual measurements. In a complex contact task such as insertion, the contact formations are hard to resolve directly. We propose a data-driven method to assess the contact formation, which is then used in real time by the state estimator. We apply our framework to two iconic tasks in robotic manipulation: planar pushing and object insertion. We evaluate the algorithm in a setup instrumented to provide ground truth. The experiments show that our approach provides an accurate and robust estimation for the studied manipulation tasks. ; by Kuan-Ting Yu. ; Ph. D.


    Access

    Download


    Export, share and cite



    Title :

    Realtime state estimation for contact manipulation



    Publication date :

    2018-01-01


    Remarks:

    1084269668


    Type of media :

    Theses


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629




    Realtime Cognitive State Estimation by Neural Network

    Takahashi, M. / Kitamura, M. / Yoshikawa, H. | British Library Online Contents | 1994


    DynoTrain – vehicle reaction – track quality – contact geometry in realtime

    Kolbe, Thomas / Kratochwille, R. | Springer Verlag | 2014



    Realtime depth estimation and obstacle detection from monocular video

    Wedel, Andreas / Franke, Uwe / Klappstein, Jens et al. | Tema Archive | 2006


    REALTIME DRIVER ASSISTANCE SYSTEM

    SMYE-RUMSBY ADAM J / CUNICO HERNAN A / FRANK PAUL A R et al. | European Patent Office | 2020

    Free access