This paper discusses the use of deep reinforcement learning to resolve deadlocks in material flow systems with automated guided vehicles (AGVs). The paper proposes a strategy for dealing with deadlocks based on a single Agent reinforcement learning approach (SARL). The agent will find the optimal solution strategy in real time. The proposed approach is evaluated using a material flow simulation for a real use case in industry. The effectiveness in reducing the occurrence of deadlocks as well as the number of collisions in the system is demonstrated. This study highlights the potential of deep reinforcement learning for improving the performance and efficiency of material flow systems with AGVs.
Simulation-based resolution of deadlocks in automated guided vehicles using deep reinforcement learning ; Simulationsgestützte Lösung von Deadlocks bei fahrerlosen Transportsystemen mit Hilfe von Deep Reinforcement Learning
2023-09-13
Article (Journal)
Electronic Resource
English
Betriebserfahrungen mit fahrerlosen Transportsystemen
Tema Archive | 1988
|Einsatzmoeglichkeiten von fahrerlosen Transportsystemen
Automotive engineering | 1983
|Wirtschaftlischkeit und Nutzen von fahrerlosen Transportsystemen
Automotive engineering | 1986
|Steuerung von fahrerlosen Transportsystemen : Regelwerk zum rechnergestützten Entwurf
LUH institutes collections | 1989
|Avoiding Deadlocks in Synchronous Railway Simulations
DataCite | 2007
|