This paper presents a path planning method for actuated tensegrity structures with quasi-static motion. The valid configurations for such structures lay on an equilibrium manifold, which is implicitly defined by a set of kinematic and static constraints. The exploration of this manifold is difficult with standard methods due to the lack of a global parameterization. Thus, this paper proposes the use of techniques with roots in differential geometry to define an atlas, i.e., a set of coordinated local parameterizations of the equilibrium manifold. This atlas is exploited to define a rapidly-exploring random tree, which efficiently finds valid paths between configurations. However, these paths are typically long and jerky and, therefore, this paper also introduces a procedure to reduce their control effort. A variety of test cases are presented to empirically evaluate the proposed method. (C) 2015 Elsevier Ltd. All rights reserved. ; Peer Reviewed ; Postprint (author's final draft)
Path planning for active tensegrity structures
2016-01-01
Article (Journal)
Electronic Resource
English
Higher-dimensional continuation , Path planning , systems , Classificació INSPEC::Optimisation , Tensegrity structures , design , Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria diferencial , continuation , Àrees temàtiques de la UPC::Informàtica::Automàtica i control , configuration , algorithms , rigidity , Differential geometry , stability , deployment , manifolds
DDC: | 629 |
Path Planning and Open-Loop Shape Control of Modular Tensegrity Structures
Online Contents | 2005
|Compliant multistable tensegrity structures
Online Contents | 2017
|Double-Helix Tensegrity Structures
Online Contents | 2015
|