When accelerating, traction from the tyres is necessary to move the vehicle forward. If too much torque is applied to the wheels of the vehicle, the tyres will start to spin and thereby the traction will decrease. This can occur when the driver of the vehicle applies to much throttle, but can be controlled with a traction control system that prevent the tyres from spinning and keeps the tyres at maximum traction to increase acceleration. In Formula Student competitions, every tenths of a second gained is vital and a traction control could help the driver to find these tenths of a second during acceleration. The purpose of this bachelor thesis was to design a slip ratio based traction control for the KTH Formula Student car DeV17 with focus on the acceleration event from standing start. A problem with standing start is the launch of the acceleration which were investigated along with a PID-controller. The model was developed in MATLAB's SIMULINK and simulated with IPG CarMaker. Small improvements in acceleration time were seen with the PID-controller but the launch did not see any improvements.


    Access

    Download


    Export, share and cite



    Title :

    Traction Control for KTH Formula Student


    Contributors:

    Publication date :

    2020-01-01


    Type of media :

    Theses


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Formula car traction force control method

    WEI QINGGUO / WANG YI / ZHOU JIE et al. | European Patent Office | 2022

    Free access



    Optimization of Janosi-Hanamoto Traction Formula

    Poncyliusz, M. M. / International Society for Terrain Vehicle Systems | British Library Conference Proceedings | 1996