Navigation and positioning systems dependent on both the operating environment and the behaviour of the host vehicle or user. The environment determines the type and quality of radio signals available for positioning and the behaviour can contribute additional information to the navigation solution. In order to operate across different contexts, a context-adaptive navigation solution is required to detect the operating contexts and adopt different positioning techniques accordingly. This paper focuses on detecting both environmental and behavioural contexts as a whole with smartphone sensors, serving for a context-adaptive navigation system. Behavioural contexts cover both human activities and different vehicle motions. The performance of behaviour recognition in this paper is improved by feature selection and a connectivity dependent filter. Environmental contexts are detected from GNSS measurements. They are classified into indoor, intermediate and outdoor categories using a probabilistic support vector machine, followed by a hidden Markov model used for time-domain filtering. As there will never be completely reliable context detection, the paper also shows how behaviours can be associated within environment detection to improve the reliability of context determination algorithms. Finally, the proposed context-determination algorithms are tested in a series of multi-context scenarios.
Behaviour-Aided Environment Detection for Context Adaptive Navigation
2018-09-01
In: Proceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018). (pp. pp. 3283-3296). ION-Institute of Navigation: Miami, Florida. (2018) (In press).
Paper
Electronic Resource
English
DDC: | 629 |
Behaviour-Aided Environment Detection for Context Adaptive Navigation
British Library Conference Proceedings | 2018
|Improving Environment Detection by Behaviour Association for Context Adaptive Navigation
BASE | 2020
|Context-Dependent Scan Matching for Aided Navigation
British Library Conference Proceedings | 2016
|