This is the peer reviewed version of the following article: Sánchez, H. E., Escobet, T., Puig, V., Fogh, P. Health-aware model predictive control of wind turbines using fatigue prognosis. "International journal of adaptive control and signal processing", 1 Abril 2018, vol. 32, núm. 4, p. 614-627, which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1002/acs.2784. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions ; Wind turbine components are subject to considerable fatigue because of extreme environmental conditions to which they are exposed, especially those located offshore. Wind turbine blades are under significant gravitational, inertial, and aerodynamic loads, which cause their fatigue and degradation during the wind turbine operational life. A fatigue problem is often present at the blade root because of the considerable bending moments applied to this zone. Interest in the integration of control with fatigue load minimization has increased in recent years. This paper investigates the fatigue assessment using a rainflow counting algorithm and the blade root moment information coming from the sensor available in a high-fidelity simulator of a utility-scale wind turbine. Then, the integration of the fatigue-based system health management module with control is proposed. This provides a mechanism for the wind turbine to operate safely and optimize the trade-off between components' life and energy production. In particular, this paper explores the integration of model predictive control with the fatigue-based prognosis approach to minimize the damage of wind turbine components (the blades). A control-oriented model of the fatigue based on the rainflow counting algorithm is proposed to obtain online information of the blades' accumulated damage that can be integrated with model predictive control. Then, the controller objective function is modified by adding an extra criterion that takes into account the accumulated damage. The scheme is implemented and tested in a well-known wind turbine benchmark. ; Peer Reviewed ; Postprint (author's final draft)


    Access

    Download


    Export, share and cite



    Health-aware model predictive control of wind turbines using fatigue prognosis

    Sánchez Sardi, Héctor Eloy / Escobet Canal, Teresa / Puig Cayuela, Vicenç et al. | BASE | 2015

    Free access


    Preview-Enabled Set-point Scheduling for Model Predictive Control of Wind Turbines

    Laks, J. / Pao, L. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2012


    Model Predictive Control of PMSG-Based Wind Turbines for Frequency Regulation in an Isolated Grid

    Wang, Haixin / Yang, Junyou / Chen, Zhe et al. | BASE | 2018

    Free access

    Load Reductioin of Wind Turbines under Wake Meandering with Model Predictive Control for Individual Pitching

    Yang, Z. / Li, Y. / Seem, J. et al. | British Library Conference Proceedings | 2012