The aim of this thesis is to track gaze direction in a human-robot interaction scenario.The human-robot interaction consisted of a participant playing a geographic gamewith three important objects on which participants could focus: A tablet, a sharedtouchscreen, and a robot (called Furhat). During the game, the participant wasequipped with eye-tracking glasses. These collected a first-person view video as wellas annotations consisting of the participant's center of gaze. In this thesis, I aim to usethis data to detect the three important objects described above from the first-personvideo stream and discriminate whether the gaze of the person fell on one of theobjects of importance and for how long. To achieve this, I trained an accurate and faststate-of-the-art object detector called YOLOv4. To ascertain that this was thecorrect object detector, for this thesis, I compared YOLOv4 with its previousversion, YOLOv3, in terms of accuracy and run time. YOLOv4 was trained with adata set of 337 images consisting of various pictures of tablets, television screens andthe Furhat robot.The trained program was used to extract the relevant objects for each frame of theeye-tracking video and a parser was used to discriminate whether the gaze of theparticipant fell on the relevant objects and for how long. The result is a system thatcould determine, with an accuracy of 90.03%, what object the participant is looking atand for how long the participant is looking at that object.Tryckt av:
Gaze detection in human-robot interaction
2020-01-01
Theses
Electronic Resource
English
DDC: | 629 |
GazeEMD : detecting visual intention in gaze-based human-robot interaction
BASE | 2021
|Human-Robot Interaction Based on Gaze Gestures for the Drone Teleoperation
BASE | 2014
|Visual intention classification by deep learning for gaze-based human-robot interaction
BASE | 2020
|