The fuel consumption of heavy-duty vehicles can be reduced by using information about the upcoming road section when controlling the vehicles. Most manufacturers of heavy-duty vehicles today offer such look-ahead controllers for highway driving, where the information consists of the road grade and the velocity only has small variations. This thesis considers look-ahead control for applications where the velocity of the vehicle has large variations, such as distribution vehicles or vehicles in mining applications. In such conditions, other look-ahead information is important, for instance legal speed limits and curvature. Fuel-efficient control is found by formulating and solving the driving missions as optimal control problems. First, it is shown how look-ahead information can be used to set constraints in the optimal control problems. A velocity reference from a driving cycle is modified to create an upper and a lower bound for the allowed velocity, denoted the velocity corridor. In order to prevent the solution of the optimal control problem from deviating too much from a normal way of the driving, statistics derived from data collected during live truck operation are used when formulating the constraints. It is also shown how curvature and speed limits can be used together with actuator limitations and driveability considerations to create the velocity corridor. Second, a vehicle model based on forces is used to find energy-efficient velocity control. The problem is first solved using Pontryagin's maximum principle to find the energy savings for different settings of the velocity corridor. The problem is then solved in a receding horizon fashion using a model predictive controller to investigate the influence of the control horizon on the energy consumption. The phasing and timing of traffic lights are then added to the available information to derive optimal control when driving in the presence of traffic lights. Third, the vehicle model is extended to include powertrain components in two different ...


    Access

    Download


    Export, share and cite



    Title :

    Fuel-Efficient Look-Ahead Control for Heavy-Duty Vehicles with Varying Velocity Demands


    Contributors:
    Held, Manne (author)

    Publication date :

    2020-01-01


    Type of media :

    Theses


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Fuel-efficient heavy-duty vehicle platooning by look-ahead control

    Turri, Valerio / Besselink, Bart / Mårtensson, Jonas et al. | BASE | 2014

    Free access



    Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning

    Turri, Valerio / Besselink, Bart / Johansson, Karl H. | BASE | 2016

    Free access

    Cooperative look-ahead control for fuel-efficient and safe heavy-duty vehicle platooning

    Turri, V. / Besselink, B. / Johansson, K.H. | BASE | 2017

    Free access