This paper studies the problem of secure control of automated vehicles in a platoon-based driving pattern over a vehicular ad-hoc network (VANET) subject to various cyber attacks. The platoon under consideration is a convoy of a leader vehicle whose control input is unknown to its following vehicles and some follower vehicles with uncertain heterogeneous engine time constants, bounded disturbance and noise. First, a local estimator is developed for each follower vehicle so as to construct some confidence ellipsoidal estimation region always enclosing vehicular true state regardless of uncertain heterogenous engine time constants, bounded disturbance and noise. A convex optimization algorithm is proposed to find some optimal ellipsoidal sets and recursively solve out gain matrices of the local estimators. Then, a scalable control protocol employing the state estimates from its local and underlying neighboring estimators is designed to accomplish secure platooning control. Under the derived design technique, the resulting closed-loop platooning tracking errors are proven to remain in the vicinity of zero. Comparative studies are conducted to validate the efficacy of the proposed control method on achieving the satisfactory platooning performance by handling different attack strategies. ; Full Text


    Access

    Download


    Export, share and cite



    Title :

    Secure platooning control of automated vehicles under cyber attacks


    Contributors:
    Mousavinejad, E (author) / Vlacic, L (author)

    Publication date :

    2022-01-01


    Remarks:

    doi:10.1016/j.isatra.2022.02.046



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629




    SARTRE Automated Platooning Vehicles

    Blanquart, Corinne ;Clausen, Uwe ;Jacob, Bernard | Wiley | 2016


    Secure Pose Estimation for Autonomous Vehicles under Cyber Attacks

    Liu, Qipeng / Mo, Yilin / Mo, Xiaoyu et al. | IEEE | 2019


    Unmanned Ground Vehicle Platooning Under Cyber Attacks: A Human-Robot Interaction Framework

    Li, Fangjian / Wang, Chengshi / Mikulski, Dariusz et al. | IEEE | 2022


    Distributed Cyber Attacks Detection and Recovery Mechanism for Vehicle Platooning

    Mousavinejad, Eman / Yang, Fuwen / Han, Qing-Long et al. | IEEE | 2020