Hippocampal ripples are highly synchronous neural events critical for memory consolidation and retrieval. A minority of strong ripples has been shown to be of particular importance in situations of increased memory demands. The propagation dynamics of strong ripples inside the hippocampal formation are, however, still opaque. We analyzed ripple propagation within the hippocampal formation in a large open-access dataset comprising 267 Neuropixel recordings in 49 awake, head-fixed mice. Surprisingly, strong ripples (top 10% in ripple strength) propagate differentially depending on their generation point along the hippocampal longitudinal axis. The septal hippocampal pole is able to generate longer ripples that engage more neurons and elicit spiking activity for an extended time even at considerable distances. Accordingly, a substantial portion of the variance in strong ripple duration (R² = 0.463) is explained by the ripple generation location on the longitudinal axis, in agreement with a possible distinctive role of the hippocampal septal pole in conditions of high-memory demand. Moreover, we observed that the location of the ripple generation has a significant impact on the spiking rate modulation of different hippocampal subfields, even before the onset of the ripple. This finding suggests that ripple generation location plays a crucial role in shaping the neural activity across the hippocampus.


    Access

    Download


    Export, share and cite



    Title :

    Differential ripple propagation along the hippocampal longitudinal axis.


    Contributors:

    Publication date :

    2023-01-01


    Remarks:

    eLife 12, e85488 (2023). doi:10.7554/eLife.85488


    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Clip with a head and a shank extending from the head along a longitudinal axis

    KOLB CHRISTIAN / SCHREIYÄCK DANIEL | European Patent Office | 2022

    Free access


    Tapered step profile index fiber with varying core index along the propagation axis [4943-16]

    Grisel, M. / Latry, O. / Ketata, M. et al. | British Library Conference Proceedings | 2003


    Torque Ripple Reduction of Interior Permanent Magnet Machines using Asymmetric Q-axis Rotor

    Islam, Md Sariful / Husain, Iqbal / Ahmed, Adeeb | IEEE | 2020


    Ripple effect

    Billemeyer, Garrett / Weaver, Edwin / Saley, Thomas et al. | Tema Archive | 2014