Simultaneous Localization And Mapping (SLAM) is an important topic within the field of roboticsaiming to localize an agent in a unknown or partially known environment while simultaneouslymapping the environment. The ability to perform robust SLAM is especially important inhazardous environments such as natural disasters, firefighting and space exploration wherehuman exploration may be too dangerous or impractical. In recent years, neuromorphiccameras have been made commercially available. This new type of sensor does not outputconventional frames but instead an asynchronous signal of events at a microsecond resolutionand is capable of capturing details in complex lightning scenarios where a standard camerawould be either under- or overexposed, making neuromorphic cameras a promising solution insituations where standard cameras struggle. This thesis explores a set of different approachesto virtual frames, a frame-based representation of events, in the context of SLAM.UltimateSLAM, a project fusing events, gray scale and IMU data, is investigated using virtualframes of fixed and varying frame rate both with and without motion compensation. Theresulting trajectories are compared to the trajectories produced when using gray scale framesand the number of detected and tracked features are compared. We also use a traditional visualSLAM project, ORB-SLAM, to investigate the Gaussian weighted virtual frames and gray scaleframes reconstructed from the event stream using a recurrent network model. While virtualframes can be used for SLAM, the event camera is not a plug and play sensor and requires agood choice of parameters when constructing virtual frames, relying on pre-existing knowledgeof the scene.


    Access

    Download


    Export, share and cite



    Title :

    Event-Based Visual SLAM : An Explorative Approach


    Contributors:

    Publication date :

    2023-01-01


    Type of media :

    Theses


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    A Minimalistic Approach to Appearance-Based Visual SLAM

    Andreasson, Henrik / Duckett, Tom / Lilienthal, Achim J. | BASE | 2008

    Free access

    Visual SLAM: Why filter?

    Strasdat, H. / Montiel, J. M. / Davison, A. J. | British Library Online Contents | 2012


    D3VIL-SLAM: 3D Visual Inertial LiDAR SLAM for Outdoor Environments

    Frosi, Matteo / Matteucci, Matteo | IEEE | 2023


    Visual SLAM Based on Lightweight SuperPoint Network

    Liu, Yunhong / Li, Zhibin | IEEE | 2022


    Visual SLAM for flying vehicles

    B. Steder / GRISETTI, GIORGIO / C. Stachniss et al. | BASE | 2008

    Free access