We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner's dilemma game. We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a whole, to find the best available strategy for themselves and the society. Following extensive simulations of this setup, we find a significant increase in the level of cooperation for a wide range of parameters, and also a full resolution of the prisoner's dilemma. We also demonstrate extreme efficiency of the optimization algorithm when dealing with environments that strongly favor the proliferation of defection, which in turn suggests that swarming could be an important phenomenon by means of which cooperation can be sustained even under highly unfavorable conditions. We thus present an alternative way of understanding the evolution of cooperative behavior and its ubiquitous presence in nature, and we hope that this study will be inspirational for future efforts aimed in this direction.


    Access

    Download


    Export, share and cite



    Title :

    Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization


    Contributors:

    Publication date :

    2017-06-19


    Remarks:

    PloS ONE, vol. 6, no. 7, pp. 1-7, 2011. ; ISSN: 1932-6203


    Type of media :

    Paper


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    510 / 629




    An experiment on Prisoner’s Dilemma with confirmed proposals

    Attanasi, Giuseppe | Online Contents | 2013




    Particle Swarm Optimization

    Gerhard Venter / Jaroslaw Sobieszczanski-Sobieski | AIAA | 2003


    Particle Swarm Optimization

    Venter, G. / Sobieszczanski-Sobieski, J. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2002