Despite the rapid development of robotic control theory, hardware motor controllers still suffer from some disadvantages: they are computationally-intensive and rely on powerful computing systems which are usually implemented using bulky and power-hungry devices. On the other hand, biological motor control systems are power-efficient, light-weight and robust. Neuromorphic engineering sheds a light on how to uncover biological control features that could lead to the design of lower power and less bulky controllers. In this paper, we present a closed-loop motor controller implemented on mixed-signal analog-digital neuromorphic hardware using a spiking neural network. The network performs PI control by encoding target, feedback and error signals using population coding. It continuously calculates the error through the network, which relates the three variables by means of feed-forward inter-population synapses. This biologically plausible and fault-tolerant strategy is ideally suited for the use of neuromorphic hardware that comprises noisy silicon neurons. Here we show how to optimize the network structure to make it robust to both noisy inputs and device mismatch. We provide experimental results showing how the controller can reach 97.1% accuracy with 75.8ms average latency.


    Access

    Download


    Export, share and cite



    Title :

    Neuromorphic Implementation of Spiking Relational Neural Network for Motor Control


    Contributors:

    Publication date :

    2020-09-04


    Remarks:

    Zhao, Jingyue; Donati, Elisa; Indiveri, Giacomo (2020). Neuromorphic Implementation of Spiking Relational Neural Network for Motor Control. In: 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genova, Italy, 31 August 2020 - 4 September 2020. IEEE, 89-93.



    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Towards neuromorphic control: A spiking neural network based PID controller for UAV

    Stagsted, Rasmus / Vitale, Antonio / Binz, Jonas et al. | BASE | 2020

    Free access

    A reconfigurable spiking neural network digital ASIC simulation and implementation

    Van Sickle, Kevin / Abdel-Aty-Zohdy, Hoda | IEEE | 2009


    ED-BioRob:A Neuromorphic Robotic Arm With FPGA-Based Infrastructure for Bio-Inspired Spiking Motor Controllers

    Linares-Barranco, Alejandro / Perez-Pena, Fernando / Jimenez-Fernandez, Angel et al. | BASE | 2020

    Free access

    ED-BioRob: A Neuromorphic Robotic Arm With FPGA-Based Infrastructure for Bio-Inspired Spiking Motor Controllers

    Linares-Barranco, Alejandro / Perez-Peña, Fernando / Jimenez-Fernandez, Angel et al. | BASE | 2020

    Free access

    Differential mapping spiking neural network for sensor-based robot control

    Zahra, Omar AbdAllah / Tolu, Silvia / Navarro-Alarcon, David | BASE | 2021

    Free access