In GeoSurf satellite constellations, any transmitter/receiver, wherever it is located, is linked to a satellite with zenith paths. We have studied the tropospheric attenuation predicted for some reference sites (Canberra, Holmdel, Pasadena, Robledo, and Spino d’Adda), which also set the meridian along which we have considered sites with latitudes ranging between 60◦ N and 60◦ S. At the annual probability of 1% of an average year, in the latitude between 30◦ N and 30◦ S, there are no significant differences between GEO slant paths and GeoSurf zenith paths. On the contrary, at 0.1% and 0.01% annual probabilities, large differences are found for latitudes greater than 30◦ N or 30◦ S. For comparing the tropospheric attenuation in GeoSurf paths with that expected in LEO highly variable slant paths, we have considered, as reference, a LEO satellite constellation orbiting in circular at 817 km. GeoSurf zenith paths “gain” several dBs compared to LEO slant paths. The more static total clear-sky attenuation (water vapor, oxygen, and clouds) in both GEO and LEO slant paths shows larger values than GeoSurf zenith paths. Both for rain and clear-sky attenuations, Northern and Southern Hemispheres show significant differences.


    Access

    Download


    Export, share and cite



    Title :

    Tropospheric attenuation in geosurf satellite constellations



    Publication date :

    2021-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    SATELLITE CONSTELLATIONS

    HERMAN JONATHAN F C / MANCE STEPHEN / FORQUERA PAUL A et al. | European Patent Office | 2021

    Free access

    Satellite constellations

    HERMAN JONATHAN F C / MANCE STEPHEN / FORQUERA PAUL et al. | European Patent Office | 2020

    Free access

    Satellite constellations

    HERMAN JONATHAN F C / MANCE STEPHEN / FORQUERA PAUL A et al. | European Patent Office | 2022

    Free access

    Satellite constellations and formation flying

    Guerman, Anna | Online Contents | 2014


    Mission Design of Satellite Constellations

    International Astronautical Federation | British Library Conference Proceedings | 1998