This article proposes a quasi-Z-source (qZS)-based Inductive Power Transfer (IPT) system for Electric Vehicles (EVs) charging applications. The IPT systems use the magnetic field to transfer power between two coils wirelessly, achieving improved reliability, safety and less environmental impact. Compared to the conventional IPT system, the proposed qZS-IPT system simultaneously achieves DC/DC regulation and DC/AC conversion through a single-stage conversion, thus lowering the cost and complexity of the system. Moreover, the reliability of the system is improved thanks to the qZS network shoot-though immunity and the reduced number of switches. To ensure the battery efficient charging and long service life, the constant current/constant voltage (CC/CV) method is considered. With the proposed innovative modulation scheme, the qZS can easily change between buck and boost modes, respectively, lowering or increasing the secondary side current. A theoretical analysis is presented for system design. Simulation results based on a 25 kW (200 V/135 A) low duty EV charger are presented to verify the effectiveness of the proposed scheme. Experimental tests are performed on a 150 W scale-down prototype to validate the analysis and demonstrate the effectiveness of the proposed qZS-IPT system for CC/CV chargers.


    Access

    Download


    Export, share and cite



    Title :

    A quasi-Z-source-based inductive power transfer system for constant current/constant voltage charging applications


    Contributors:

    Publication date :

    2021-12-01


    Remarks:

    Castiglia , V , Campagna , N , Miceli , R , Viola , F & Blaabjerg , F 2021 , ' A quasi-Z-source-based inductive power transfer system for constant current/constant voltage charging applications ' , Electronics (Switzerland) , vol. 10 , no. 23 , 2900 . https://doi.org/10.3390/electronics10232900



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Fuel Cell Based Inductive Power Transfer System for Supercapacitors Constant Current Charging

    Campagna, Nicola / Castiglia, Vincenzo / Miceli, Rosario | IEEE | 2021



    Constant-current constant-voltage IPT system capable of configuring charging voltage and charging current

    ZHANG YONGGAO / YANG WEIWEI / LIU PENG et al. | European Patent Office | 2022

    Free access

    Constant current/constant voltage output method of wireless charging system

    LIU JIAOJIAO / NIU WANGQIANG / CHEN ZAIXING et al. | European Patent Office | 2021

    Free access