This paper presents how to design proportional integral controller and Fuzzy PI based controller for efficiently load frequency control. Loads on the electrical system always vary in relation to that time, which results in diversity of frequency, causing frequency control problems to be loaded. The frequency difference is highly undesirable and the maximum allowable difference in frequency is ±0.5 Hz. This paper load frequency control is done by PI controller, which is a conventional controller. This type of controller is slow and the controller does not allow the designer to keep in mind the potential change in operating conditions and non linearity in the generator unit. To overcome these flaws, new intelligent controllers like Fuzzy PI Controller are presented to extinguish tie line power due to deviation in frequency and various load disturbances. The effectiveness of the proposed controller has been confirmed using the MATLAB SIMULINK software. The results show that the PI fuzzy controller provides fast response, little undershoots and negligible overshoot with small state transfer time to reach the final stable position. Ajay Kumar Maurya | Dr. G. K. Banerjee | Dr. Piush Kumar "Design Fuzzy-PI Based Controller for Load Frequency Control of Thermal - Thermal Area Interconnected Power System" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-1 , December 2018, URL: https://www.ijtsrd.com/papers/ijtsrd19164.pdf


    Access

    Download


    Export, share and cite



    Title :

    Design Fuzzy PI Based Controller for Load Frequency Control of Thermal Thermal Area Interconnected Power System


    Contributors:

    Publication date :

    2018-12-16


    Remarks:

    oai:zenodo.org:3577505
    International Journal of Trend in Scientific Research and Development 3(1) 928-934



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629