The focus of the research community in the soft robotic field has been on developing innovative materials, but the design of control strategies applicable to these robotic platforms is still an open challenge. This is due to their highly nonlinear dynamics which is difficult to model and the degree of stochasticity they often incorporate. Data-driven controllers based on neural networks have recently been explored as a viable solution to be employed for these manipulators. This letter presents a neural network-based closed-loop controller, trained by a deep reinforcement learning algorithm called Trust Region Policy Optimization (TRPO). The training takes place in simulation, using an approximation of the robot forward dynamic model obtained with a Long-short Term Memory (LSTM) network. The trained controller allows following different paths executed with different velocities in the workspace of the robot. The results demonstrate that the controller is effective in normal working conditions and with a payload attached to the end-effector of the manipulator.


    Access

    Download


    Export, share and cite



    Title :

    Closed-loop dynamic control of a soft manipulator using deep reinforcement learning



    Publication date :

    2022-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Intelligent Control of Manipulator Based on Deep Reinforcement Learning

    Zhou, Jiangtao / Zheng, Hua / Zhao, Dongzhu et al. | IEEE | 2021


    Dynamic and Closed-Loop Control

    Joslin, Ronald D. / Miller, Daniel N. | AIAA | 2009



    A continuous reinforcement learning strategy for closed-loop control in fluid dynamics

    Pivot, Charles / Cordier, Laurent / Mathelin, Lionel | AIAA | 2017