Human activity recognition plays an important role in the context of Ambient Assisted Living (AAL), providing useful tools to improve people quality of life. This work presents an activity recognition algorithm based on the extraction of skeleton joints from a depth camera. The system describes an activity using a set of few and basic postures extracted by means of the X-means clustering algorithm. A multi-class Support Vector Machine, trained with the Sequential Minimal Optimization is employed to perform the classification. The system is evaluated on two public datasets for activity recognition which have different skeleton models, the CAD-60 with 15 joints and the TST with 25 joints. The proposed approach achieves precision/recall performances of 99.8 % on CAD-60 and 97.2 %/91.7 % on TST. The results are promising for an applied use in the context of AAL.
A 3D Human Posture Approach for Activity Recognition Based on Depth Camera
2016-01-01
Conference paper
Electronic Resource
English
DDC: | 629 |
Hard Disk Posture Recognition and Grasping Based on Depth Vision
TIBKAT | 2023
|Hard Disk Posture Recognition and Grasping Based on Depth Vision
Springer Verlag | 2023
|British Library Online Contents | 2016
|