The cerebellum is a neural structure essential for learning, which is connected via multiple zones to many different regions of the brain, and is thought to improve human performance in a large range of sensory, motor and even cognitive processing tasks. An intriguing possibility for the control of complex robotic systems would be to develop an artificial cerebellar chip with multiple zones that could be similarly connected to a variety of subsystems to optimize performance. The novel aim of this paper, therefore, is to propose and investigate a multizone cerebellar chip applied to a range of tasks in robot adaptive control and sensorimotor processing. The multizone cerebellar chip was evaluated using a custom robotic platform consisting of an array of tactile sensors driven by dielectric electroactive polymers mounted upon a standard industrial robot arm. The results demonstrate that the performance in each task was improved by the concurrent, stable learning in each cerebellar zone. This paper, therefore, provides the first empirical demonstration that a synthetic, multizone, cerebellar chip could be embodied within existing robotic systems to improve performance in a diverse range of tasks, much like the cerebellum in a biological system.


    Access

    Download


    Export, share and cite



    Title :

    A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing:A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing


    Contributors:

    Publication date :

    2021-01-31


    Remarks:

    Wilson , E D , Assaf , T , Rossiter , J M , Dean , P , Porrill , J , Anderson , S R & Pearson , M J 2021 , ' A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing : A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing ' , Journal of the Royal Society, Interface , vol. 18 , no. 174 , 20200750 , pp. 1-16 . https://doi.org/10.1098/rsif.2020.0750



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Control of a humanoid NAO robot by an adaptive bioinspired cerebellar module in 3D Motion tasks

    Antonietti, Alberto / Martina, Dario / Casellato, Claudia et al. | BASE | 2019

    Free access

    Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks.

    CASELLATO, CLAUDIA / ANTONIETTI, ALBERTO / FERRIGNO, GIANCARLO et al. | BASE | 2015

    Free access

    A Cerebellar Internal Models Control Architecture for Online Sensorimotor Adaptation of a Humanoid Robot Acting in a Dynamic Environment

    Capolei, Marie Claire / Andersen, Nils Axel / Lund, Henrik Hautop et al. | BASE | 2020

    Free access

    Programmable Multizone Furnace

    Ting, Edmund Y. / Larson, David J., Jr. | NTRS | 1990


    Multizone control: What are your choices

    British Library Online Contents | 1996