Rehabilitation and assistive technologies are touching new bounds of excellence due to the advent of more user friendly human–machine interfaces (HMI) and ergonomic design principles. Among the most fundamental movements which are required in performing activities of daily living is the sit and stand motion, a device is proposed in this study which enables a patient to perform his activities of daily living (ADL) tasks by enabling them to sit, stand and move without the need of an assistant. The device, in this study, is proposed to be activated by an electroencephalogram (EEG) based intention acquisition system. The intention is acquired from eye blinks. The EEG based intention detection system converts eye blinks to respective commands after classification of eye blink signals collected using EMOTIVE® EPOCH+ headset. These control commands then trigger the control algorithm which then actuates and controls the system states. For the later, two control schemes namely proportional integral derivative (PID) control and sliding mode control (SMC) are tested in this study. The simulation and experimental results are given. The experimental setup consists of an offline EEG signal classification module, Simulink® model and the prototype of the actual device. It is concluded that SMC performs far better than PID for control of the assistive device in ensuring patient comfort during motion. ; This project is a joint venture by Higher Education Commission of Pakistan and Department of Mechatronics and Biomedical Engineering (DMBE) at Air University. The Project is financially supported by Higher Education Commission of Pakistan under the Technology Development Fund 2018 (Grant number: TDF02-223). ; publishedVersion


    Access

    Download


    Export, share and cite



    Title :

    Patient's intention detection and control for sit-stand mechanism of an assistive device for paraplegics


    Contributors:

    Publication date :

    2021-04-20


    Remarks:

    cristin:1905338
    102627 ; Biomedical Signal Processing and Control ; 68 ; 1-11



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629




    Powered Lift For Paraplegics

    Aubert, Ben | NTRS | 1987



    Outdoor bicycle for exercise in paraplegics and quadriplegics

    Petrofsky, J.S. / Ill, H.H. / Philips, C.A. | Tema Archive | 1983


    Integrated Exoskeleton to Assist Paraplegics in Driving a Car

    Geel, Eeshan / Tiwari, Rahul Kumar | SAE Technical Papers | 2019


    Integrated Exoskeleton to Assist Paraplegics in Driving a Car

    Tiwari, Rahul Kumar / Geel, Eeshan | British Library Conference Proceedings | 2019