The concept behind the more electric aircraft is the progressive electrification of on-board actuators and services. It is a way to reduce or eliminate the dependence on hydraulic, mechanical, and bleed air/pneumatic systems, and pursue efficiency, reliability, and maintainability. This paper presents a specialized test rig whose main objective is to assess insulation lifespan modeling under various stress conditions, especially investigating the interaction between ageing factors. The test setup is able to reproduce a multitude of environmental and operational conditions at which electric drives and motors, used in aerospace applications, are subjected. It is thus possible to tailor the test cycle in order to mimic the working cycle of an electrical motor during real operation in aircraft application. The developed test-rig is aimed at projecting the technology readiness to higher levels of maturity in the context of electrical motors and drives for aerospace applications. Its other objective is to validate and support the development of a comprehensive insulation degradation model.


    Access

    Download


    Export, share and cite



    Title :

    Multistress Characterization of Fault Mechanisms in Aerospace Electric Actuators



    Publication date :

    2017-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English


    Classification :

    DDC:    621






    Actuators for aerospace applications - developments and trends

    Anhalt, C. / Wierach, P. / Breitbach, E. | Tema Archive | 2002


    Potential of piezo hydraulic actuators for aerospace

    Rammer, R. / Janker, P. / Luth, T.C. et al. | British Library Conference Proceedings | 2007