This paper proposes an analytical solution of the Inverse Kinematics (IK) problem at dead point configurations for any planar one degree of freedom linkage mechanism, with regard to the continuity C n of the motion law. The systems analyzed are those whose elements are linked with lower pairs and do not present redundancies. The study aims to provide the user with some rules to facilitate the design of feasible motion profiles to be reproduced by conventional electrical actuators at these configurations. During the last decades, sev- eral methods and techniques have been developed to study this specific configuration. However, these techniques are mainly focused on solving numerically the IK indetermi- nacy, rather than analyzing the motion laws that the mechanisms are able to perform at these particular configurations. The analysis presented in this paper has been carried out differentiating and applying l’Hôpital’s rule to the system of constraint equations / ð q Þ of the mechanism. The study also considers the feasibility of the time-domain profiles to be reproduced with conventional electrical actuators (i.e. AC/DC motors, linear actuators, etc.). To show the usefulness and effectiveness of the method, the development includes the analytical application and numerical simulations for two common one degree of free- dom systems: a slider-crank and a four linkage mechanisms. Finally, experimental results are presented on a four linkage mechanism test bed. ; Postprint (author's final draft)


    Access

    Download


    Export, share and cite



    Title :

    Feasibility of motion laws for planar one degree of freedom linkage mechanisms at dead point configurations



    Publication date :

    2018-01-01



    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629