In autonomous racing there is a need to accurately localize the vehicle while simultaneously creating a map of the track. This information can be delivered to planning and control layers in order to achieve fully autonomous racing. The kinematic model is a commonly used motion model in feature-based SLAM. However, it is a poor representation of the vehicle when considering high lateral accelerations since the model is only based on trigonometric relationships. This Master’s Thesis investigates the consequence of using the kinematic model when undertaking demanding maneuvers; and if by switching to a dynamic model, which takes the tire forces into account, can improve the localization performance. An EKF-SLAM algorithm comprising the kinematic and dynamic model was implemented on a development platform. The pose estimation accuracy was compared using either model when subject to typical maneuvers in racing-scenarios. The results showed that the pose estimation accuracy was in general similar when using either of the vehicle models. When exposed to large slip angles, the implications of switching from a kinematic model to a dynamic model resulted in a significantly better pose estimation accuracy when driving in an unknown environment. However, switching to a dynamic model had little effect when driving in a known environment. The implications of the study suggest that, during the first lap of a racing track, the kinematic model should be switched to a dynamic model when subject to high lateral accelerations. For the consecutive laps, the choice of vehicle model has less impact. Keywords: SLAM, EKF-SLAM, Localization, Estimation, Vehicle Dynamics, Kinematic Model, Dynamic Model, Autonomous Racing ; I autonom racing är det viktigt att kunna lokalisera fordonet med hög noggrannhet samtidigt som en karta över banan skapas. Den här informationen kan vidare bli hanterad av planerings- och reglersystem för att uppfylla autonom racing fullt ut. Den kinematiska modellen är en vanligt förekommande rörelsemodell i SLAM. Den ...


    Access

    Download


    Export, share and cite



    Title :

    Impact of Vehicle Dynamics Modelling on Feature Based SLAM for Autonomous Racing. ; Fordonsmodelleringens påverkan på SLAM för autonom racing.


    Contributors:

    Publication date :

    2019-01-01


    Type of media :

    Theses


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    DDC:    629



    Traction Adaptive trajectory planning for autonomous racing ; Greppadaptiv rörelseplanering för autonom racing

    Aboud Vieider, Felicia / Kulkarni, Anirudh Narasimha | BASE | 2020

    Free access


    Autonomous Unmanned Vehicle Based on SLAM

    Zhen, Chong / Wang, Yifeng / Zhang, Xiulin et al. | IEEE | 2023


    DL-SLAM: Direct 2.5D LiDAR SLAM for Autonomous Driving

    Li, Jun / Zhao, Junqiao / Kang, Yuchen et al. | IEEE | 2019


    Airplane racing and racing machines

    Seekatz, Fr., Wm. | Engineering Index Backfile | 1921