In this paper, higher-order dynamic mode decomposition (HODMD) was applied to find the main patterns and frequencies of a transient aerodynamic flow field when an aircraft wing experiences stall. This method was applied to a computational flow simulation with a turbulence model based on a hybrid Reynolds-averaged Navier-Stokes large-eddy simulation (RANS/LES) [commonly known as detached-eddy simulation (DES)], where a combination of two-dimensional (2D) and three-dimensional (3D) flow visualization techniques are used to understand the vortex shedding from the main wing and its interaction with the tailplane. Simulation results were compared to the experimental ones and the results with proper orthogonal decomposition (POD) were compared with the HODMD analysis. The main advantage of HODMD resides in its identification of the main physical phenomena and the most relevant instabilities that lead the fluid dynamics. New flow control strategies can be defined when the underlying physics and the flow dynamics are known. Moreover, HODMD is robust in noisy and turbulent databases using less data than fast Fourier transform (FFT), which gives potential for future flow control applications, focused on improving the aircraft’s efficiency.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    DES of a Slingsby Firefly Aircraft: Unsteady Flow Feature Extraction Using POD and HODMD


    Additional title:

    J. Aerosp. Eng.


    Contributors:

    Published in:

    Publication date :

    2022-09-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Aircraft 39-45: Slingsby Hengist

    Online Contents | 1999


    CFD Modelling and flight test of a Slingsby T67 Firefly with flaps

    Bennett, Christopher J. / Lawson, Nicholas | AIAA | 2023


    Slingsby sky

    Engineering Index Backfile | 1951


    Slingsby T.53

    Wilson, M. | Engineering Index Backfile | 1967