The traffic volume of each movement at signalized intersections can provide valuable information on real-time traffic conditions that enable traffic control systems to dynamically respond to the fluctuated traffic demands. Real-time movement-based traffic volume prediction is challenging due to various nonlinear spatial relationships at different locations/approaches and the complicated underlying temporal dependencies. In this study, a novel deep intersection spatial-temporal network (DISTN) is developed for real-time movement-based traffic volume prediction at signalized intersections, which considers both spatial and temporal features by the convolutional neural network (CNN) and long short-term memory (LSTM), respectively. In addition, the within-day, daily, and weekly periodic trends of traffic volume are also considered in the proposed model. This is the first time that a deep-learning method has been applied for movement-based traffic volume prediction at signalized intersections. In the numerical experiment, the proposed model is evaluated using real-world data and simulation data to demonstrate its effectiveness. The impacts of various structures of traffic networks on the proposed model are also discussed. Results show that the proposed model outperforms some of the state-of-the-art volume prediction methods currently in the literature.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Real-Time Movement-Based Traffic Volume Prediction at Signalized Intersections


    Contributors:


    Publication date :

    2020-06-10




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    Unknown



    Estimating cycle-level real-time traffic movements at signalized intersections

    Mahmoud, Nada / Abdel-Aty, Mohamed / Cai, Qing et al. | Taylor & Francis Verlag | 2022


    Modeling Vehicles Movement at Signalized Intersections

    Chen, Zhenqi / Mao, Baohua / Liu, Mingjun et al. | ASCE | 2008


    Real-Time Prediction of Lane-Based Queue Lengths for Signalized Intersections

    Bing Li / Wei Cheng / Lishan Li | DOAJ | 2018

    Free access