This paper discusses the development of an advanced hybrid loop technology that incorporates elements from both passive and active loop technologies. The result is a simple yet high performance cooling technology that can be used to remove high heat fluxes from large heat input areas. Operating principles and test results of prototype hybrid loops are discussed. Prototype hybrid loops have been demonstrated to remove heat fluxes in excess of 350W/cm2 from heat input areas over 4cm2 with evaporator thermal resistances between 0.008 and 0.065°C/W/cm2. Also importantly, this performance was achieved without the need to actively adjust or control the flows in the loops, even when the heat inputs varied between 0 and 350W/cm2. These performance characteristics represent substantial improvements over state of the art heat pipes, loop heat pipes and spray cooling devices. The hybrid loop technology was demonstrated to operate effectively at all orientations.
Robust Cooling of High Heat Fluxes Using Hybrid Loop Technology
SPACE TECHNOLOGY AND APPLICATIONS INT.FORUM-STAIF 2005: Conf.Thermophys in Micrograv;Conf Comm/Civil Next Gen.Space Transp; 22nd Symp Space Nucl.Powr Propuls.;Conf.Human/Robotic Techn.Nat'l Vision Space Expl.; 3rd Symp Space Colon.; 2nd Symp.New Frontiers ; 2005 ; Albuquerque, New Mexico (USA)
AIP Conference Proceedings ; 746 , 1 ; 64-68
2005-02-06
5 pages
Conference paper
Electronic Resource
English
Robust Cooling of High Heat Fluxes Using Hybrid Loop Technology
British Library Conference Proceedings | 2005
|Hybrid Loop Cooling of High Heat Flux Components
AIAA | 2004
|