Wireless power transmission within a given working area is required or enabling for many NASA Exploration Systems. Fields of application include robotics, habitats, autonomous rendezvous and docking, life support, EVA, and many others. In robotics applications, for example, the robots must move in the working area without being hampered by power cables and, meanwhile, obtain a continuous and constant power from a power transmitter. The development of modern technology for transmitting electric power over free space has been studied for several decades, but its use in a system has been mainly limited to low power, 1–2 Vdc output voltage at a transmission distance of few meters for which relatively less than 0.5 mW/cm2 is required (e.g., Radio frequency identification RFID). Most of the rectenna conversion efficiency research to date has concentrated in low GHz frequency range of 2.45 to 10 GHz, with some work at 35 GHz. However, for space application, atmospheric adsorbtion is irrelevant and higher frequency systems with smaller transmit and receive apertures may be appropriate. For high power, most of the work on rectennas has concentrated on optimizing the conversion efficiency of the microwave rectifier element; the highest power demonstrated was 35 kW of power over a distance of 1.5 km. The objective of this paper is to establish the manner in which a very large number of very low power microwave devices can be synchronized to provide a beam of microwaves that can be used to efficiently and safely transport a significant amount of power to a remote location where it can be converted to dc (or ac) power by a “rectenna.” The proposed system is based on spatial power combining of the outputs of a large number of devices synchronized by mutual injection locking. We have demonstrated at JPL that such power could be achieved by combining 25 sources in a configuration that allows for convenient steering of the resulting beam of microwaves. Retrodirective beam steering for microwave power transmission (the ability to accurately track a moving receiver) has been demonstrated at Texas A&M. It is proposed that the next step in development of this concept is a modest scale up from 25 elements to 435 followed by a further scale up using such 435 element arrays as subarrays for a still larger retrodirective system. Ultimately, transmit antenna sizes on the order of 100 meters are envisioned permitting transfer levels on the order of 30 kW to aerial vehicles up to 20 km.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Technologies for Lunar Surface Power Systems Power Beaming and Transfer


    Contributors:

    Conference:

    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM‐STAIF 2008: 12th Conference on Thermophysics Applications in Microgravity; 1st Symposium on Space Resource Utilization; 25th Symposium on Space Nuclear Power and Propulsion; 6th Conference on Human/Robotic Technology and the Vision for Space Exploration; 6th Symposium on Space Colonization; 5th Symposium on New Frontiers and Future Concept ; 2008 ; Albuquerque (New Mexico)


    Published in:

    AIP Conference Proceedings ; 969 , 1 ; 809-817


    Publication date :

    2008-01-21


    Size :

    9 pages





    Type of media :

    Conference paper


    Type of material :

    Electronic Resource


    Language :

    English



    Laser Power Beaming Systems for Lunar Surface Applications

    Rosemary, J. / Frye, P. / Gill, S. P. | SAE Technical Papers | 1992


    Laser Power Beaming Systems for Lunar Surface Applications

    Gill, S. P. / Frye, P. / Rosemary, J. et al. | British Library Conference Proceedings | 1992


    Laser Power Beaming for Lunar Polar Exploration

    Landis, Geoffrey A. | AIAA | 2020


    Laser Power Beaming for Lunar Pole Exploration

    Enright, J. P. / Carroll, K. A. / Canadian Aeronautics and Space Institute et al. | British Library Conference Proceedings | 1997