Six evaporators for Lunar Lander and Lunar Habitat thermal control applications were designed, fabricated and tested in a vapor compression loop at heat loads in the range of 3–6 kW. The evaporator heated area was and their total mass ranged from 1.0 kg to 3.2 kg depending on the design. The primary objective of the study was to investigate different evaporator designs and identify and characterize the evaporator design with the lowest temperature, most uniform temperature, smallest mass, and lowest pressure drop. The results obtained using serpentine evaporators showed excellent temperature uniformity across the evaporator surface at these relatively high heat loads. The temperature lift from the evaporator surface to the average condenser coolant temperature was also measured and ranged from 30 to 50° C depending on the heat load. The Coefficient of Performance (COP), defined as the ratio of the heat load to the compressor work at 6 kW, was 1.9. The best evaporator out of six evaporators tested transferred heat at one half of the thermal resistance of the baseline evaporator, while maintaining the same system COP.
Advanced Evaporators for Lunar Lander and Lunar Habitat Thermal Control Applications
SPACE, PROPULSION & ENERGY SCIENCES INTERNATIONAL FORMUM SPESIF‐2010: 14th Conference on Thermophysics Applications in Microgravity 7th Symposium on New Frontiers in Space Propulsion Sciences 2nd Symposium on Astrosociology 1st Symposium on High Frequency Gravitational Waves ; 2010 ; Huntsville (Alabama)
AIP Conference Proceedings ; 1208 , 1 ; 21-33
2010-01-28
13 pages
Conference paper
Electronic Resource
English
Descent Assisted Split Habitat Lunar Lander Concept
IEEE | 2008
|Descent Assisted Split Habitat Lunar Lander Concept
NTRS | 2008
|DataCite | 2024
|AIAA | 1992
|NTRS | 1992
|