When we consider and analyze physical events with the purpose of creating corresponding models we often assume that the mathematical apparatus used in modeling is infallible. In particular, this relates to the use of infinity in various aspects and the use of Newton's definition of a limit in analysis. We believe that is where the main problem lies in contemporary study of nature. This work considers Physical aspects in a setting of arithmetic, algebra, geometry, analysis, topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided. In particular, we prove the following Theorems, which give Observer's Mathematics point of view on Einstein photoelectric effect theory and Lamb-Scully and Hanbury-Brown-Twiss experiments: Theorem 1. There are some values of light intensity where anticorrelation parameter A ∈ [0,1). Theorem 2. There are some values of light intensity where anticorrelation parameter A = 1. Theorem 3. There are some values of light intensity where anticorrelation parameter A > 1.
Photoelectric effect from observer's mathematics point of view
10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014 ; 2014 ; Narvik, Norway
AIP Conference Proceedings ; 1637 , 1 ; 487-490
2014-12-10
4 pages
Conference paper
Electronic Resource
English
NTIS | 2014
|Quantum mechanics problems in observer's mathematics
American Institute of Physics | 2012
|American Institute of Physics | 2014
|An Observer's View of Magnetars
NTRS | 2014
|Quantum mechanics problems in observer's mathematics
British Library Conference Proceedings | 2012
|