A homogenization approach is proposed for the treatment of porous wall boundary conditions in the computation of compressible viscous flows. Like any other homogenization approach, it eliminates the need for pore-resolved fluid meshes, and therefore enables practical flow simulations in computational fluid domains with porous wall boundaries. Unlike alternative approaches, however, it does not require prescribing a mass flow rate and does not introduce in the computational model a heuristic discharge coefficient. Instead, it models the inviscid flux through a porous wall surrounded by the flow as a weighted average of the inviscid flux at an impermeable surface and that through pores. It also introduces a body force term in the governing equations to account for friction loss along the pore boundaries. The source term depends on the thickness of the porous wall and the concept of an equivalent single pore. The feasibility of the latter concept is demonstrated using low-speed permeability test data for the fabric of the Mars Science Laboratory parachute canopy. The overall homogenization approach is illustrated with a series of supersonic flow computations through the same fabric and verified using supersonic pore-resolved numerical simulations.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Homogenized Flux-Body Force Treatment of Compressible Viscous Porous Wall Boundary Conditions


    Contributors:

    Published in:

    AIAA Journal ; 59 , 6 ; 2045-2059


    Publication date :

    2021-03-19


    Size :

    15 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English