In an effort to improve the accuracy of current aircraft ice-accretion prediction tools, experimental and analytical studies have been conducted on airfoils roughened by natural ice accretion. Surface roughness introduced by ice accretion and its effect on surface convective heat transfer have been tested and modeled, based on 10 experimental test cases. A novel scaling coefficient relating the Stanton and Reynolds numbers was introduced for heat transfer comparison and modeling in turbulent regime. By coupling the ice roughness and heat transfer models together with LEWICE ice-accretion tool, an improved ice-accretion model has been achieved. Four experimental ice shapes were obtained at the Adverse Environment Rotor Test Stand laboratory for model validation. The new surface-roughness model had very good agreement in both overall ice shape and ice thickness at the stagnation line (within 5% discrepancy for four experimental cases), whereas LEWICE prediction constantly underestimated the stagnation ice thickness by 30%. The overprediction of ice-horn lengths was also addressed by the proposed model. In one of the glaze-to-rime-regime cases, LEWICE overpredicted the upper and lower horn lengths by 32 and 22%, respectively, whereas the new model prediction resulted in ± 3 % accuracy.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Surface Roughness and Heat Transfer Improved Predictions for Aircraft Ice-Accretion Modeling


    Contributors:

    Published in:

    AIAA Journal ; 55 , 4 ; 1318-1331


    Publication date :

    2017-04-01




    Type of media :

    Conference paper , Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English






    Analysis of surface roughness generation in aircraft ice accretion

    HANSMAN, JR., R. / REEHORST, ANDREW / SIMS, JAMES | AIAA | 1992



    Modeling of surface roughness effects on glaze ice accretion

    HANSMAN, R. JOHN / YAMAGUCHI, KEIKO / BERKOWITZ, BRIAN et al. | AIAA | 1991