Because of its excellent insulation capability, the usage of a silica-phenolic charring ablator as a nozzle liner is a common practice in the solid rocket motor industry. During the design of a solid rocket motor employing a silica-phenolic nozzle liner, it is desired to conduct an accurate analysis yielding in-depth thermal response and recession characteristics. As the interior ballistics and nozzle recession rate mutually interact, the best practice is to perform a coupled solution to both. Commonly used one-dimensional analysis tools with empirical approaches for estimation of convective heat transfer rate and blowing effect generally lack sought accuracy and do not model the transient shape-change phenomenon, which affects the nozzle performance. This Paper considers governing equations for charring, including pyrolysis gas injection and surface energy balance for melting ablation, along with a boundary condition governed by interior ballistics, and demonstrates a framework in which these equations are solved with governing equations for the nozzle flowfield in a coupled manner. Development and validation of a one-dimensional material response solver based on the same governing equations is also demonstrated. Also, results from a static firing test conducted with a small-scale ballistic evaluation motor employing a silica-phenolic nozzle insert are provided. Results from both investigations are compared and discussed.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Conjugate Analysis of Silica-Phenolic Charring Ablation Coupled with Interior Ballistics


    Contributors:

    Published in:

    Publication date :

    2021-01-25


    Size :

    16 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English






    Gun Interior Ballistics

    Ramanujachari, V. / Indian Institute of Technology (Madras) | British Library Conference Proceedings | 1998


    Interior ballistics of guns

    Krier, Herman | TIBKAT | 1979


    Crack Modeling in Charring Ablation Materials

    Fu, Rui / Martin, Alexandre | TIBKAT | 2023