To avoid an overconservative design and to ensure desired performance in an optimal way, the product quality and robustness are considered in terms of the product-performance mean and variance. In this paper, to facilitate robust design exploration under uncertainty, a new sequential-subspace-robustness-assessment method is presented to assess not only the mean and variance of performance, but also their sensitivities with respect to design parameters. The proposed method is based on the computational framework that integrates the univariate revolving integration and surrogate modeling of univariate integral functions. The proposed framework enables consideration of bivariate-interaction effects approximately by the aggregation of multiple revolving integration terms in a partial set of bivariate subspaces. It is found that the proposed method provides better accuracy with comparable computational cost in assessing the statistical moments and sensitivities of product performance than existing methods, such as dimension-reduction method. Several numerical examples, including mathematical and structural problems, are presented to demonstrate the efficiency and accuracy of the method.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Sequential Subspace Robustness Assessment and Sensitivity Analysis


    Contributors:

    Published in:

    AIAA Journal ; 55 , 2 ; 610-623


    Publication date :

    2017-02-01




    Type of media :

    Conference paper , Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English





    Sequential Subspace Robustness Assessment

    Bae, Ha-rok / Alyanak, Edward J. | AIAA | 2016


    Sequential Subspace Robustness Assessment (AIAA 2016-1676)

    Bae, Ha-rok / Alyanak, Edward J. | British Library Conference Proceedings | 2016