Reactive hydrocode calculations of shock-to-detonation transition in heterogeneous energetic (HE) materials need to be closed with burn models. One requirement of burn models is to supply a macroscale control volume with an energy release rate due to chemical reactions that reflects the subgrid physics of hotspot ignition and growth. Energy localization at hotspots delivers chemical energy at a rate e ˙ meso = Δ H r / τ meso , where Δ H r is the heat of reaction and τ meso is a meso-scale energy localization time scale. This energy deposition rate is much larger than nominal Arrhenius-form chemical energy deposition rates in a homogeneous sample subjected to the same shock loading. To develop meso-informed energy deposition rate models, this paper identifies a meso-scale energy release time scale τ meso that is common to burn models based on the hotspot ignition and growth concept. The identification of a common time scale allows for a unified microstructure-aware, physics-based reactive burn model; high-fidelity meso-scale numerical simulations are used to construct a surrogate model for τ meso . The surrogate model is shown to capture the effects of microstructural parameters on e ˙ meso and can be used for meso–macro coupling in a multiscale model to predict the sensitivity of HE materials.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Unified Approach for Meso-Informed Burn Models in Shocked Energetic Materials


    Contributors:

    Published in:

    Publication date :

    2020-09-01




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Physically Evocative Meso-Informed Burn Model: Topology of Evolving Hotspot Fields

    Udaykumar, H. S. / Nguyen, Yen T. / Kumar Seshadri, Pradeep | AIAA | 2022


    Shocked Materials from the Dutch Peak Diamictite, Utah

    Hoerz, F. / Bunch, T. E. / Oberbeck, V. R. et al. | British Library Conference Proceedings | 1994


    Shocked Materials from the Dutch Peak Diamictite, Utah

    Hoerz, F. / Bunch, T. E. / Oberbeck, V. R. et al. | British Library Conference Proceedings | 1994


    Nonequilibrium Radiation NO in Shocked Air

    Surzhikov, Sergey / Kozlov, Pavel | AIAA | 2017


    Calorimetric Thermobarometry of Experimentally Shocked Quartz

    Ocker, K. D. / Gooding, J. L. / Hoerz, F. et al. | British Library Conference Proceedings | 1994