This paper presents a numerical study of heat transfer at high temperatures in thermal insulation materials made of cylindrical ceramic fibers. In particular, the properties of hollow and solid fibers in the temperature range between 1000 and 2000°C have been compared. Considering fibers made of ceramic oxides like Al 2 O 3 , light scattering is the key process to suppress radiative heat transfer because the materials have very low absorptivity in the wavelength range of substantial thermal radiation at these temperatures. In a treatment based on Maxwell’s equations, the general differences of hollow- and solid-fiber scattering are evaluated in the single fiber limit. After applying the model to the special case of Al 2 O 3 fibers, the comparison is expanded to multifiber configurations. Thereby, dependent scattering effects and conductive heat transfer are considered. Careful inspection of the results leads to the conclusion that thermal insulations made of hollow ceramic fibers can provide significantly lower effective thermal conductivity than insulations made of solid fibers at the same volume fraction of fiber material. This statement holds in particular at temperatures above 1000°C, where heat loss could be reduced up to a factor of two in wide ranges of practical interest.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Heat Transfer Properties of Hollow-Fiber Insulation Materials at High Temperatures


    Contributors:
    Brendel, H. (author) / Seifert, G. (author) / Raether, F. (author)

    Published in:

    Publication date :

    2016-08-26


    Size :

    10 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English






    Heat Transfer in High-Temperature Multilayer Insulation

    Daryabeigi, K. / Miller, S. / Cunnington, G. et al. | British Library Conference Proceedings | 2006