In this paper, a multiphysics numerical approach for predicting the ionization level in solid rocket engine plumes is presented. Ionization takes place in the rocket combustion chamber and in the exhaust plume. A low-temperature, high-density plasma is created, with small Debye length in most of the plume region. Ambipolar diffusion is therefore assumed for ions and electrons in the plume, and a set of conservation equations is derived to be solved by the numerical model. A number of numerical strategies to resolve this system is derived, as well as a novel scheme that enforces charge neutrality. This approach is integrated into a complex code for compressible, multispecies, turbulent flow simulations. The model is then coupled with a Maxwell’s equations solver in order to simulate the radar cross section of rocket plumes. Finally, computations of ionization levels and radar cross section of a Black Brant rocket plume are presented.
Numerical Simulation of Ionized Rocket Plumes
Journal of Thermophysics and Heat Transfer ; 28 , 2 ; 218-225
2014-04-01
Conference paper , Article (Journal)
Electronic Resource
English
Numerical Simulation of Ionized Rocket Plumes
AIAA | 2013
|Numerical Simulations of Atlas-II Rocket Motor Plumes
British Library Conference Proceedings | 2001
|Numerical Simulations of Atlas II Rocket Motor Plumes
British Library Conference Proceedings | 1999
|Numerical simulations of Atlas II rocket motor plumes
AIAA | 1999
|NTIS | 1966
|