Neural networks have become state-of-the-art computer vision tools for tasks that learn implicit representations of geometrical scenes. This paper proposes a two-part network architecture that exploits a view-synthesis network to understand a context scene and a graph convolutional network to generate a shape body model of an object within the field of view of a spacecraft’s optical navigation sensors. Once the first part of the network’s architecture understands the spacecraft’s environment, it can generate images from novel observations. The second part uses a multiview set of images to construct a 3D graph-based representation of the object. The proposed network pipeline produces shape models with accuracies that compete with state-of-the-art methods currently used for missions to small bodies. The network pipeline can be trained for multi-environment missions. Moreover, the onboard implementation may be more cost-effective than the current state-of-the-art.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Online Shape Modeling of Resident Space Objects Through Implicit Scene Understanding


    Contributors:

    Published in:

    Publication date :

    2022-04-01




    Type of media :

    Conference paper , Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English



    ONLINE RESIDENT SPACE-OBJECT SHAPE MODELING THROUGH IMPLICIT SCENE UNDERSTANDING

    Heintz, Aneesh / Peck, Mason A. / Sun, Fangchen et al. | TIBKAT | 2021


    Online Resident Space-Object Shape Modeling through Implicit Scene Understanding

    Heintz, Aneesh / Peck, Mason A. / Sun, Fangchen et al. | AIAA | 2021


    Ballistic Coefficient Prediction for Resident Space Objects

    Russell, R. | British Library Conference Proceedings | 2013


    Machine Learning Classification of Malicious Resident Space Objects

    Whited, Derick / Doyle, Daniel / Black, Jonathan | TIBKAT | 2022


    Characterization of Resident Space Objects using Light Curves

    Vallverdú Cabrera, David / Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik | TIBKAT | 2024

    Free access