The effects of stator shroud air injection on aerodynamic performance were investigated for a single-stage axial compressor. Multiobjective optimization of the air injector was performed to maximize the enhancements of the peak adiabatic efficiency and stall margin using three-dimensional Reynolds-averaged Navier–Stokes equations. The numerical results for adiabatic efficiency and the total pressure ratio were validated with experimental data for a smooth casing. The design variables were determined through a parametric study as the axial distance between stator leading edge and the injector, the radius of the injector surface curvature, the circumferential coverage of the injector, and the injection mass flow rate. The peak adiabatic efficiency and stall margin were selected as the objective functions. Kriging models were constructed using objective function values calculated at 45 design points, which were selected by Latin hypercube sampling to approximate the objective functions. The performances of two different optimization algorithms were compared. The optimization results showed that an efficiency-oriented optimum design presented an increase of 2.47% in the peak adiabatic efficiency when compared with the compressor with a smooth casing, whereas a stall margin-oriented optimum design showed an increase of 1.13% in the stall margin.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Aerodynamic Optimization of a Single-Stage Axial Compressor with Stator Shroud Air Injection


    Contributors:

    Published in:

    AIAA Journal ; 55 , 8 ; 2739-2754


    Publication date :

    2017-06-16


    Size :

    16 pages




    Type of media :

    Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English