An extensive experimental investigation has been conducted to assess the feasibility of implementing laser ignition in a cryogenic reaction and control system and orbital and maneuvering system thrusters. A 400 N experimental thruster, with a single-coaxial injector element, was designed for a steady-state pressure of 2 bar and was tested using two laser ignition systems: a tabletop laser as well as a miniaturized laser, which was mounted onto the thruster. Chamber pressures in the thruster before ignition varied from 200 mbar for liquid oxygen/gaseous methane to 450 mbar for liquid oxygen/gaseous hydrogen. The locations of energy deposition and the energy deposited were varied to determine the associated ignition probabilities for the propellant combinations liquid oxygen/gaseous hydrogen and liquid oxygen/gaseous methane. Plasma ignition and ablation ignition were both examined. For 100% ignition success, minimum energies measured were lower for liquid oxygen/gaseous hydrogen (72 mJ) than for liquid oxygen/gaseous methane (92 mJ), and they were lower for ablation (14.5 mJ for liquid oxygen/gaseous hydrogen and 61.7 mJ for liquid oxygen/gaseous methane) than plasma ignition. The feasibility of laser ignition for cryogenic thrusters was demonstrated, and further investigation needs were revealed.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Laser Ignition of an Experimental Cryogenic Reaction and Control Thruster: Ignition Energies


    Contributors:

    Published in:

    Publication date :

    2014-07-01




    Type of media :

    Conference paper , Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English