Among the operations in the general-aviation community, one of the most important objectives is to improve safety across all flight regimes. Flight-data-monitoring or flight-operations-quality-assurance programs have percolated in the general-aviation sector with the aim of improving safety by analyzing and evaluating flight data. Energy-based metrics provide measurable indications of the energy state of the aircraft, and can be viewed as an objective currency to evaluate various safety-critical conditions. The use of data-mining techniques for safety analysis, incident examination, and fault detection is gaining traction in the aviation community. In this paper, a generic methodology is presented for identifying anomalous flight-data records from general-aviation operations in the approach-and-landing phase. Energy-based metrics, identified in previous work, are used to generate feature vectors for each flight-data record. Density-based clustering and one-class classification are then used together for anomaly detection using energy-based metrics. A demonstration of this methodology on a set of actual flight-data records from routine operations, as well as simulated flight data, is presented, highlighting its potential for retrospective safety analysis. Anomaly detection using energy metrics, specifically, is a novel application presented here.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Anomaly Detection in General-Aviation Operations Using Energy Metrics and Flight-Data Records


    Contributors:

    Published in:

    Publication date :

    2018-01-01




    Type of media :

    Conference paper , Article (Journal)


    Type of material :

    Electronic Resource


    Language :

    English




    Energy-Based Metrics for General Aviation Flight Data Record Analysis

    Puranik, Tejas G. / Harrison, Evan / Min, Sanggyu et al. | AIAA | 2016


    General Aviation Approach and Landing Analysis using Flight Data Records

    Puranik, Tejas G. / Harrison, Evan / Min, Sanggyu et al. | AIAA | 2016



    Energy-Based Metrics for Safety Analysis of General Aviation Operations

    Puranik, Tejas / Jimenez, Hernando / Mavris, Dimitri | AIAA | 2017

    Free access