Part One: The Current Plan -- Chapter 1: Introduction -- Chapter 2: NASA's Plans -- Chapter 3: The Major Elements and Other Modules -- Chapter 4: Key Enabling Technologies -- Chapter 5: Crew Risks and Health Systems -- Part Two: A Safer, Quicker and Cheaper Plan -- Chapter 6: The Flexible Path to the Moons of Mars -- Chapter 7: Mission Operations -- Part Three: The Major Players -- Chapter 8: Summary of NASA Headquarters and Center Contributions -- Chapter 9: Other Government Contributions -- Chapter 10: International Contributions -- Chapter 11: Prime and Support Contractors -- Appendices -- References -- Glossary -- Index.

    This book explores the once popular idea of 'Flexible Path' in terms of Mars, a strategy that would focus on a manned orbital mission to Mars's moons rather than the more risky, expensive and time-consuming trip to land humans on the Martian surface. While currently still not the most popular idea, this mission would take advantage of the operational, scientific and engineering lessons to be learned from going to Mars's moons first. Unlike a trip to the planet's surface, an orbital mission avoids the dangers of the deep gravity well of Mars and a very long stay on the surface. This is analogous to Apollo 8 and 10, which preceded the landing on the Moon of Apollo 11. Furthermore, a Mars orbital mission could be achieved at least five years, possibly 10 before a landing mission. Nor would an orbital mission require all of the extra vehicles, equipment and supplies needed for a landing and a stay on the planet for over a year. The cost difference between the two types of missions is in the order of tens of billions of dollars. An orbital mission to Deimos and Phobos would provide an early opportunity to acquire scientific knowledge of the moons and Mars as well, since some of the regolith is presumed to be soil ejected from Mars. It may also offer the opportunity to deploy scientific instruments on the moons which would aid subsequent missions. It would provide early operational experience in the Mars environment without the risk of a landing. The author convincingly argues this experience would enhance the probability of a safe and successful Mars landing by NASA at a later date, and lays out the best way to approach an orbital mission in great detail. Combining path-breaking science with achievable goals on a fast timetable, this approach is the best of both worlds--and our best path to reaching Mars safely in the future.


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Exploring the Martian Moons : A Human Mission to Deimos and Phobos




    Publication date :

    2017


    Size :

    Online-Ressource (XVI, 255 p. 126 illus., 123 illus. in color, online resource)


    Remarks:

    Campusweiter Zugriff (Universität Hannover) - Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.
    Erworben aus Studienqualitätsmitteln




    Type of media :

    Book


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :

    BKL:    55.88 Luftverkehr, Raumfahrt
    DDC:    600



    The Mars moons Phobos and Deimos

    Deutsches Zentrum für Luft- und Raumfahrt (DLR) | TIB AV-Portal | 2013



    Mars Phobos and Deimos Survey (M-PADS) – A martian Moons orbiter and Phobos lander

    Ball, Andrew J. / Price, Michael E. / Walker, Roger J. et al. | Elsevier | 2008


    Phobos, Deimos Mission

    Mukhin, L. / Sagdeev, R. / Karavasili, K. et al. | British Library Conference Proceedings | 2000


    Mission Concept of Phobos/Deimos Exploration

    K. Matsushima / J. Saito / M. Utashima et al. | NTIS | 1993