Ten years after the publication of Infrared Optics and Zoom Lenses, this text is still the only current publication devoted exclusively to infrared zoom lenses. This updated second edition includes 18 new refractive and reflective infrared zoom systems, bringing the total number of infrared zoom optical systems to 41 systems. Other additions include a section on focal plane arrays and a new closing chapter specifically devoted to applications of infrared zoom lenses. Coverage of wavelength region has been expanded to include the near infrared. Additional topics include an examination of the importance of principal planes, methods for athermalization by means of computer glass substitution, and global optimization techniques for zoom lens design

    3. Unique features of the infrared region -- 3.1. Optical materials.3.1.1. Materials for the infrared; 3.1.2. Calculation of index of refraction -- 3.2. Thermal Compensation. 3.2.1. Focus shift with temperature; 3.2.2. Athermalization; 3.2.3. Athermalization methods -- 3.3. Cold stop and cold shield -- 3.4. Narcissus. 3.4.1. Types of retroreflections; 3.4.2. Reduction techniques -- 3.5. Glass substitution -- 3.6. References -- 4. Optical design techniques -- 4.1. Optical design starting point -- 4.2. Scaling -- 4.3. Optical materials selection -- 4.4. Techniques for compactness -- 4.5. Symmetry principle -- 4.6. Bending -- 4.7. Aplanatic condition -- 4.8. Adding an element -- 4.9. Field lens utilization -- 4.10. Conics and aspheres -- 4.11. Diffractive surfaces -- 4.12. Aperture stop location -- 4.13. Computer optimization -- 4.14. Global search -- 4.15. Tolerances -- 4.16. References -- 5. Zoom Lenses -- 5.1. Types of zoom lenses. 5.1.1. Optically compensated zoom lens; 5.1.2. Mechanically compensated zoom lens -- 5.2. Infrared zoom lens specifications. 5.2.1. Spectral region; 5.2.2. Optical system performance; 5.2.3. Aperture; 5.2.4. Effective focal length; 5.2.5. Magnification range; 5.2.6. Size constraints; 5.2.7. Operating environment; 5.2.8. Distortion; 5.2.9. Transmission; 5.2.10. Narcissus; 5.2.11. Vignetting -- 5.3. Extenders -- 5.4. References

    6. Refractive infrared zoom lenses -- 6.1. Target simulators. 6.1.1. CI Systems; 6.1.2. Hughes Aircraft Company; 6.1.3. Lockheed Martin; 6.1.4. Optics 1 -- 6.2. Scanning systems. 6.2.1. Barr & Stroud; 6.2.2. Pilkington P.E.; 6.2.3. Optics 1; 6.2.4. Precision-Optical Engineering; 6.2.5. Zhejiang University, Department of Optical Engineering; 6.2.6. Electrooptical Industries, Ltd.; 6.2.7. Scotoptix; 6.2.8. Optimum Optical Systems; 6.2.9. Royal Institute of Technology; 6.2.10. Fuji Photo Optical Company; 6.2.11. Carl Zeiss -- 6.3. Charge-coupled device imaging systems. 6.3.1. Angenieux; 6.3.2. University of Alabama, Huntsville; 6.3.3. National First University of Science and Technology; 6.3.4. Industrial Technology Research Institute -- 6.4. Laser beam expanders. 6.4.1. Carl Zeiss; 6.4.2. University of Twente -- 6.5. Diffractive optics. 6.5.1. Optics 1; 6.5.2. Optical E.T.C., Inc. and Teledyne Brown; 6.5.3. Wescam; 6.5.4. Texas Instruments; 6.5.5. Raytheon; 6.5.6. Raytheon -- 6.6. Focal plane arrays.6.6.1. Agency for Defence Development; 6.6.2. Royal Institute of Technology; 6.6.3. Royal Institute of Technology -- 6.7. References

    7. Reflective infrared zoom systems -- 7.1. Obscured systems. 7.1.1. Korea Advanced Institute of Science and Technology; 7.1.2. Center for Applied Optics, University of Alabama, Huntsville -- 7.2. Unobscured systems. 7.2.1. Hughes Aircraft Company; 7.2.2. Optical E.T.C., Inc.; 7.2.3. Beijing Institute of Technology; 7.2.4. Contraves Brashear -- 7.3. Special systems. 7.3.1. Lockheed Martin; 7.3.2. Industrial Research, Ltd.; 7.3.3. Optical Research Associates -- 7.4. References -- 8. Future trends -- 8.1. Athermalization -- 8.2. Diffractive optical elements -- 8.3. Conics and aspherics -- 8.4. Materials -- 8.5. Detector technology -- 8.6. Simulators -- 8.7. Mirror systems -- 8.8. Wavelength region -- 8.9. Optomechanical considerations -- 8.10. Computer optimization -- 8.11. References -- 9. Summary of applications -- 9.1. Scene projection and simulation -- 9.2. Wide and narrow field of view scanning telescopes for target search and recognition -- 9.3. WFOV and NFOV FPA or CCD surveillance, tracking, and target recognition -- 9.4. Battlefield detection of enemy soldiers and armaments -- 9.5. Search and rescue operations -- 9.6. Mineral resource surveys and forest fire detection -- 9.7. Laser scanning systems -- 9.8. Cutting sheet metal with high-power lasers -- 9.9. Observation of solar regions -- 9.10. Camera cell phones -- Appendix A. Miscellaneous patents -- Appendix B. Computer analysis of selected patents -- Appendix C. Answers to problems from Chapter 2 -- Index

    Preface -- 1. System considerations -- 1.1. Radiometry. 1.1.1. Blackbody radiation; 1.1.2. Planck's equation; 1.1.3. Stefan-Boltzmann law; 1.1.4. Wien displacement law -- 1.2. Atmospheric transmission. 1.2.1. Scattering; 1.2.2. Absorption; 1.2.3. Infrared windows; 1.2.4. Computer calculation -- 1.3. Lens transmission; 1.3.1. Transmittance; 1.3.2. Reflectance -- 1.4. Coatings. 1.4.1. Single-layer coatings; 1.4.2. Multilayer coatings -- 1.5. Infrared detectors. 1.5.1. Basic relations; 1.5.2. Types; 1.5.3. Arrays; 1.5.4. Matching the detector with the optics -- 1.6. References -- 2. Optics fundamentals -- 2.1. Lens equation -- 2.2. Stops and pupils -- 2.3. Optical formulas -- 2.4. Optical performance criteria -- 2.5. Telescopes -- 2.6. Primary aberrations. 2.6.1. Definition of the Seidel aberrations; 2.6.2. Variation of primary aberrations with aperture and field height; 2.6.3. Stop shift equations -- 2.7. Achromatism. 2.7.1. Primary achromatism; 2.7.2. Secondary spectrum -- 2.8. Principal planes -- 2.9. Problems -- 2.10. References


    Access

    Download

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Infrared optics and zoom lenses




    Edition :

    2nd ed


    Publication date :

    2009


    Size :

    1 online resource (xiii, 164 p. : ill.)


    Remarks:

    Campusweiter Zugriff (Universität Hannover) - Vervielfältigungen (z.B. Kopien, Downloads) sind nur von einzelnen Kapiteln oder Seiten und nur zum eigenen wissenschaftlichen Gebrauch erlaubt. Keine Weitergabe an Dritte. Kein systematisches Downloaden durch Robots.
    "SPIE digital library. - Includes bibliographical references and index
    Includes bibliographical references and index
    Restricted to subscribers or individual electronic text purchasers




    Type of media :

    Book


    Type of material :

    Electronic Resource


    Language :

    English



    Classification :


    Zoom lenses

    Hopkins, H.H. | Engineering Index Backfile | 1949


    Perspective projection camera model for zoom lenses

    Willson, R. G. / Shafer, S. A. / Institute of Geodesy and Photogrammetry et al. | British Library Conference Proceedings | 1994


    Zooming-component loci of mechanically compensated zoom lenses

    Tanaka, K. / SPIE / Optical Society of India | British Library Conference Proceedings | 1999


    Zoom optics maximize diode-laser efficiency

    Ehlers, B. | British Library Online Contents | 2000


    Zoom lens design using gradient-index lenses [2173-20]

    Deguchi, M. / Moore, D. T. / Kindred, D. S. et al. | British Library Conference Proceedings | 1994