Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Aerodynamic Data Predictions for Transonic Flows via a Machine-Learning-based Surrogate Model (AIAA 2018-1905)


    Contributors:

    Conference:

    AIAA/ASCE/AHS/ASC Structures, dynamics and materials (Conference)



    Publication date :

    2018-01-01


    Size :

    23 pages



    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English



    Aerodynamic Data Predictions for Transonic Flows via a Machine-Learning-based Surrogate Model

    Dupuis, Romain / Jouhaud, Jean-Christophe / Sagaut, Pierre | AIAA | 2018


    Machine Learning-Based Surrogate Modeling for Aerodynamic Loads Predictions

    Abras, Jennifer / Tuckey, Todd / McDaniel, David R. et al. | AIAA | 2023


    Machine Learning-Based Surrogate Modeling for Aerodynamic Loads Predictions

    Abras, Jennifer / Tuckey, Todd / McDaniel, David R. et al. | TIBKAT | 2023


    Variable-Fidelity Surrogate Modeling of Lambda Wing Transonic Aerodynamic Performance (AIAA 2016-0294)

    Bryson, Dean E. / Rumpfkeil, Markus P. | British Library Conference Proceedings | 2016


    Aerodynamic Design of Transonic Natural-Laminar-Flow (NLF) Wing via Surrogate-basedGlobal Optimization (AIAA 2016-2041)

    Han, Zhong-Hua / Chen, Jing / Zhu, Zhen et al. | British Library Conference Proceedings | 2016